Membrane-Bound PenA β-Lactamase of Burkholderia pseudomallei.

نویسندگان

  • Linnell B Randall
  • Karen Dobos
  • Krisztina M Papp-Wallace
  • Robert A Bonomo
  • Herbert P Schweizer
چکیده

Burkholderia pseudomallei is the etiologic agent of melioidosis, a difficult-to-treat disease with diverse clinical manifestations. β-Lactam antibiotics such as ceftazidime are crucial to the success of melioidosis therapy. Ceftazidime-resistant clinical isolates have been described, and the most common mechanism is point mutations affecting expression or critical amino acid residues of the chromosomally encoded class A PenA β-lactamase. We previously showed that PenA was exported via the twin arginine translocase system and associated with the spheroplast fraction. We now show that PenA is a membrane-bound lipoprotein. The protein and accompanying β-lactamase activity are found in the membrane fraction and can be extracted with Triton X-114. Treatment with globomycin of B. pseudomallei cells expressing PenA results in accumulation of the prolipoprotein. Mass spectrometric analysis of extracted membrane proteins reveals a protein peak whose mass is consistent with a triacylated PenA protein. Mutation of a crucial lipobox cysteine at position 23 to a serine residue results in loss of β-lactamase activity and absence of detectable PenAC23S protein. A concomitant isoleucine-to-alanine change at position 20 in the signal peptide processing site in the PenAC23S mutant results in a nonlipidated protein (PenAI20A C23S) that is processed by signal peptidase I and exhibits β-lactamase activity. The resistance profile of a B. pseudomallei strain expressing this protein is indistinguishable from the profile of the isogenic strain expressing wild-type PenA. The data show that PenA membrane association is not required for resistance and must serve another purpose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Investigations of PenA-mediated β-lactam Resistance in Burkholderia pseudomallei

Burkholderia pseudomallei is the etiological agent of melioidosis. Because of the bacterium's intrinsic resistance and propensity to establish latent infections, melioidosis therapy is complicated and prolonged. Newer generation β-lactams, specifically ceftazidime, are used for acute phase therapy, but resistance to this cephalosporin has been observed. The chromosomally encoded penA gene encod...

متن کامل

Burkholderia pseudomallei class a beta-lactamase mutations that confer selective resistance against ceftazidime or clavulanic acid inhibition.

Burkholderia pseudomallei, the causative agent of melioidosis, is inherently resistant to a variety of antibiotics including aminoglycosides, macrolides, polymyxins, and beta-lactam antibiotics. Despite resistance to many beta-lactams, ceftazidime and beta-lactamase inhibitor-beta-lactam combinations are commonly used for treatment of melioidosis. Here, we examine the enzyme kinetics of beta-la...

متن کامل

Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection

Burkholderia pseudomallei, a bacterium that causes the disease melioidosis, is intrinsically resistant to many antibiotics. First-line antibiotic therapy for treating melioidosis is usually the synthetic β-lactam, ceftazidime (CAZ), as almost all B. pseudomallei strains are susceptible to this drug. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, which can lead t...

متن کامل

Characterization of Ceftazidime Resistance Mechanisms in Clinical Isolates of Burkholderia pseudomallei from Australia

Burkholderia pseudomallei is a gram-negative bacterium that causes the serious human disease, melioidosis. There is no vaccine against melioidosis and it can be fatal if not treated with a specific antibiotic regimen, which typically includes the third-generation cephalosporin, ceftazidime (CAZ). There have been several resistance mechanisms described for B. pseudomallei, of which the best desc...

متن کامل

Sesquiterpene farnesol contributes to increased susceptibility to β-lactams in strains of Burkholderia pseudomallei.

This study aimed to evaluate the in vitro combination of farnesol and β-lactams against Burkholderia pseudomallei. A total of 12 β-lactamase-positive strains were tested according to CLSI standards. All strains were inhibited by farnesol, with MICs ranging from 75 to 150 μM. The combination of this compound with β-lactams resulted in statistically significant β-lactam MIC reduction (P ≤ 0.05). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 60 3  شماره 

صفحات  -

تاریخ انتشار 2015